
Almiraj: A Method for Fuzzing Embedded Systems
Leveraging Unicorn & AFL

Zach Heller
M.S. in Computer Science

Washington University in St. Louis
zheller@wustl.edu

Bryan Orabutt
PhD Student in Computer Engineering

Washington University in St. Louis
borabutt@wustl.edu

Abstract—Embedded systems are hard to fuzz. Cross-platform
fuzzing (e.g. using a desktop to send fuzzing inputs to an
embedded device) has large performance problems. Hardware
limitations in communication slow fuzzing considerably, and
monitoring state information is a task unto itself due to overhead
and problems with fault detection. Crashes make the system
lock up which halts communication from the embedded device.
If one can get to the point of reliably observing crashes and
communicating, resetting the state of an embedded device will
usually require a reboot, which is a massive time sink. Addition-
ally, the various architectures and OSes reduce the portability
of an embedded fuzzer. Our goal was to create a portable
method for fuzzing embedded systems. We propose Almiraj as
a new method of fuzzing for vulnerable embedded code. By
leveraging the architecture emulation of the Unicorn Engine,
we bypass many hardware limitations and performance pitfalls
of previously explored hardware fuzzers. We chose to target
FreeRTOS running on a BeagleBone Black (BBB) as a proof
of concept because of FreeRTOS’s popularity and ubiquity as an
embedded operating system. Any device that can be emulated
by Unicorn should be able to be tested, allowing for a wide
range of devices and their binaries to be fuzzed. We call our
framework Almiraj after the mythical horned rabbit; our version
is an American Fuzzy Lop with a unicorn horn.

Index Terms—fuzzing, FreeRTOS, emulation, Unicorn, AFL

I. METHODOLOGY

The original goal was to create a system for fuzzing
embedded devices by using Unicorn and afl-unicorn to allow
for fast fuzzing of emulated binaries. We could then “replay”
emulated crashing inputs on target hardware to verify the errors
were in the binary and not in emulation. Because the emulated
code might need access to memory mapped IO at some point
during execution, we were going to write an IO forwarding
mechanism to allow IO access to Unicorn through JTAG (see
Figure 1). This would allow Unicorn to read/write to memory
mapped IO, and would also allow for replaying of inputs on
the target device once a crash was detected. Unfortunately, we
were overly ambitious and only got each component working
individually to varying degrees.

A. Source code & reproduction of experiments

As of right now most of our source code works independently,
but we have no software to integrate all parts successfully.
We have working IO forwarding/JTAG code, working test
harnesses for fuzzing, and somewhat working emulation code
for Unicorn. We evaluated each piece independently of each

Fig. 1: The proposed fuzzing system we dubbed “Almiraj”

other. All source code can be found in our GitHub repository
located at https://github.com/BryanOrabutt/almiraj.

1) IO Forwarding/JTAG: Our IO forwarding mechanism
comes in the form of a Python 2 library. We had to use
Python 2 since Unicorn and afl-unicorn are not supported in
Python 3. The file src/openocd scripts/OpenOCD.py defines
this library, and also acts as an executable to allow standalone
testing of the library functions. The library implements all of
the functionality that is needed to handle IO forwarding as well
as some useful functionality for debugging and performance
analysis.

In order to replicate the experiment we talk about in
Evaluation, first build the code described in the Emulation
subsection for the BBB. This is done easily using the makefile
in the BBB directory. Place the resulting application binary
(called app) on an SD card, along with the bootloader (called

https://github.com/BryanOrabutt/almiraj


MLO) from the BBB/doc folder. Place the SD card in the
BBB and hold the boot button and apply power. The BBB will
boot from the SD card and load the application binary into
RAM at address 0x80000000.

Next you must build the TI fork of OpenOCD. The source
code is located in openocd/openocd/. In this directory execute
the following:

• ./bootstrap
• ./configure –enable-maintainer-mode –enable-ftdi –enable-

xds110
• make
• sudo make install

Now, with the program running on the BBB connect the
XDS110 JTAG emulator to the PC and the BBB. From
src/openocd scripts/ folder, execute the runit script to start
OpenOCD targeting the debug access port (DAP) on the BBB’s
ARM core. This script may need to be run as sudo/root. Once
OpenOCD is running, execute the Python library and you
will be presented with a prompt to enter commands. Halt the
processor with the halt command and overwrite the string at
address 0x80003000 using the memwrite [address] [count]
[size] command. The arguments for this command are the
address to begin writing to, the number of data elements to
write, and the size of each element (e.g. w = word, h = half-
word, b = byte). Make sure to include a NULL terminator in
your string. Once the string is overwritten, resume execution.

With the modified program executing, attach a USB→Serial
converter cable to the UART port on the BBB. Use a terminal
emulator program such as Cutecom or screen, configured for
115200 baud, and view the messages being printed over the
UART. You will see the string message you wrote into RAM
being printed.

2) Emulation: To begin emulating you must install Unicorn.
The easiest way to do this is to simply install afl-unicorn using
the install scripts. This will cover installing Unicorn and afl-
unicorn in one fell swoop. To do this execute the following
from the afl-unicorn/ directory:

• make
• sudo make install
• cd unicorn mode
• sudo ./build unicorn support.sh

We have a somewhat working emulation script for Unicorn
located in unicorn stuff/ called freertos emu.py. This script
emulates a FreeRTOS binary in Unicorn and adds hook
functions in order to display executed instructions and register
values. Unfortunately the emulation will eventually crash when
the program counter reaches 0x80000920; a problem we are
still trying to figure out.

Running this code is fairly easy. First a memory map
describing the address range of each function is needed,
described in JSON format. This can be created using the
file src/helper scripts/disasm parser.py and providing an
argument in the form of a filename of a disassembly text
file. Then execute it in Python 2 and a stream of messages will
be printed describing the emulation state. It can be useful to

redirect this output to a file to easier viewing. The instructions
and register values can be cross referenced to a disassembly
dump of the target binary using objdump if the appropriate
ARM toolchains are installed. To test other binaries, simply
change the filename in the emulation script from target.bin to
the filename of the binary you wish to emulate. The simple
bare metal program used to test OpenOCD.py is included in
this directory, called app. This file, however, does not emulate
properly.

3) Fuzzing: afl-unicorn is a project Nathan Voss developed
at Battelle, which he open-sourced and explains in his articles
on Hacker Noon[1], [2]. His specialized fuzzer functions the
same as AFL, but with a new mode to target binaries emulated
by Unicorn. We successfully compiled afl-unicorn on a couple
Linux distributions1. We verified our install of afl-unicorn was
working with a sample test harness, sample target binary, and
sample input binaries. This can be found in almiraj src/afl-
unicorn/unicorn mode/samples/simple/. From there, execute
afl-fuzz -U -m none -i inputs -o output -- python2
test harness.py @@ to start fuzzing in Unicorn mode. To
fuzz a portion of our FreeRTOS binary (as far as our emulation
will execute successfully), run the run fuzz script from within
the src/fuzz testing directory. We explored many permutations
of inputs and modified the test harness extensively, but we
could not get the Unicorn engine to emulate correctly. Due to
our struggle with emulation, we did not make a lot of progress
in terms of fuzzing and thus cannot evaluate our fuzzing speed
or efficacy.

II. EVALUATION

We first tried to get all of the components of our project
working independent of each other. We wrote a Python library
to implement IO forwarding in JTAG through OpenOCD. We
tried emulating target binaries in Unicorn without any fuzzing.
Finally, we made an attempt to bring all of the pieces together
with a simple UART bare metal program, but were not met
with success.

A. IO Forwarding through JTAG

One of the most important parts of our project is having the
ability to forward data over JTAG to real hardware peripherals.
Because Unicorn only emulates the CPU and no hardware
peripherals, we had to find a way to allow Unicorn to detect
whether an address was physical memory, or memory mapped
IO. In addition, we needed a mechanism that would allow IO
access through JTAG if Unicorn needed to read or write to a
memory mapped IO device.

The first approach that we took to doing this was to modify
Unicorn’s uc mem read() and uc mem write() functions
directly. We added an extra parameter to specify a filename
to each of the functions. The file was assumed to be of JSON
format and the address passed into the function would be
compared with the address range defined in the JSON. If a hit
was found, we would know that the address was an IO device.

1The build scripts work on Ubuntu but require modification for other
distributions.



This worked well, but we ran into roadblocks when trying to
add JTAG libraries to implement the IO forwarding, leading
to many build issues. Eventually this idea was abandoned in
favor of using a simpler external interface, in this case we
chose OpenOCD.

OpenOCD provides two mechanisms for communication
with external software: a tcl remote procedure call (RPC) server,
and a telnet server. We first tried writing a Python program that
would allow us to use the RPC server. This would have given
us more flexibility as there are some commands only available
via the RPC server, and it also allows tcl scripts (containing
OpenOCD commands) to be executed which would give us
more functionality. Due to our unfamiliarity with tcl and the
lack of documentation for using the RPC server, we eventually
gave up this route in favor of using the OpenOCD telnet server
which was a much simpler interface.

Our final approach worked very well. Using our Python
library we were able to send commands to OpenOCD which
allowed us to perform register operations and memory oper-
ations on the target device (BBB). To test and make sure it
was working we put a simple bare metal UART program on
the BBB and used our Python library to write a custom string
to the address of the buffer that our UART was printing. We
then resumed the execution of the processor and observed our
serial terminal program and were able to see this custom string
being printed.

B. Emulation in Unicorn

The Unicorn Engine is a CPU emulator framework, based
on QEMU, that is still in its infancy (on Version 1.0.1). It
targets many different architectures (ARM, ARM64, MIPS,
X86, M68K, and SPARC), whereas most CPU emulators focus
on single architectures. However, emulating in Unicorn is
very much a non-trivial task. We chose to use Python for our
emulation harness because of our familiarity and the multitude
of Python examples for both Unicorn and afl-unicorn.

We started by exploring some of the tutorials[15] and
examples for using Unicorn and were able to successfully
emulate small trivial binaries in various architectures (MIPS,
ARM, x86). Once we had some working examples, we used
the ARM example as a basis to build off of and attempted to
emulate FreeRTOS. Unfortunately, we had trouble emulating
FreeRTOS successfully. Unicorn would always throw errors
about invalid memory reads and writes, but the perplexing part
was that these reads and writes were in mapped addresses.

The BBB has RAM from address 0x80000000 to
0x9FFFFFFF (512MB), and in Unicorn we would map 512MB
of memory starting at address 0x80000000. Every single
”unmapped address” Unicorn complained about during a crash
was within this mapped range. We tried mapping less using
the program size in bytes, page aligned to 4Kb, but this made
the emulation stop even sooner. There is obviously much we
still do not understand about how Unicorn partitions memory
and this halted our progress on emulating FreeRTOS. We did
notice that Unicorn seems to crash when executing a bx or blx
instruction which leads us to believe it has some bugs when

doing a context switch between ARM and Thumb.
Since we could not get FreeRTOS emulated successfully we

tried a simple bare metal program shown below:
#include <string.h>
#include <stdlib.h>
#include "soc_AM335x.h"
#include "beaglebone.h"
#include "consoleUtils.h"
int main()
{

char* param = (char*)0x80030000;
int x = 0;
/* Initialize console for communication with the Host

Machine */
ConsoleUtilsInit();
ConsoleUtilsSetType(CONSOLE_UART);
ConsoleUtilsPrintf("Hello from Beaglebone Black\n\0");

//copy message
strncpy(param, "Hello World\r\n\0", 14);
while(1)
{

ConsoleUtilsPrintf(param);
for(x = 0; x < 100000000; x++); //busy wait

}
return 0;

}

This program would copy a string message to an address
location and use a UART to print it continuously to a serial
console. This is the same program that we used to test the
OpenOCD script. This is a simpler program that FreeRTOS
by orders of magnitude, but still much more complicated than
the simple binaries we had success emulating. The addition
of a UART would have allowed us the opportunity to test the
JTAG forwarding to read/write to the UART control and status
registers. However, we encountered more issues with this binary
than we did with the FreeRTOS binary. During emulation, this
binary is not read correctly by Unicorn. Every instruction is
andeq r0, r0, r0 which corresponds to an instruction where
all bits are 0. However, when looking at the binary file with
objdump, we can easily see that this is not the case. We had
not changed anything about our emulation setup other than the
filename of the binary, and we made sure the file was opened
correctly without error. We are still not sure why Unicorn can
not read this binary but can read other binaries built with the
same tool chain.

III. FUTURE WORK

Unfortunately, we have not had any much success in bringing
all of the components together. The main source of our difficulty
is with the Unicorn Engine. We have been struggling to get
binaries to emulate without crashing—even small bare metal
code. There is much we still do not understand about how
Unicorn works which is mostly due to its lack of documentation.
As such, we have not been able to get any code to emulate far
enough to need access to IO.

Because of this, there is still much work to be done for
Almiraj to be a useful method of fuzzing embedded systems. In
order of importance, the following work should be completed:

1) Create a better emulation script that can emulate full
binary files without crashing.



2) Add support to the emulation script for IO forwaring,
extending our JSON memmap file to include IO periph-
erals.

3) Fuzz our emulated binary with our IO forwarding
extensions built into the emulation

4) Improve IO performance using USB3.0 bridge similar
to Inception[4].

5) Incorporate a stronger fuzzer, e.g. CollAFL[10].
While we did not succeed in creating a complete tool, we feel
that the work we have done has laid a good foundation for
developing a tool to fuzz arbitrary embedded devices.

REFERENCES

[1] N. Voss, “afl-unicorn: Fuzzing arbitrary binary code,” Oct 2017. [Online].
Available: https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-
code-563ca28936bf

[2] ——, “afl-unicorn: Part 2 - fuzzing the ’unfuzzable’,” Nov 2017.
[Online]. Available: https://hackernoon.com/afl-unicorn-part-2-fuzzing-
the-unfuzzable-bea8de3540a5

[3] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing
embedded devices,” in NDSS 2018, Network and Distributed
Systems Security Symposium, 18-21 February 2018, San Diego, CA,
USA, San Diego, UNITED STATES, 02 2018. [Online]. Available:
http://www.eurecom.fr/publication/5417

[4] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-wide
security testing of real-world embedded systems software,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, 2018, pp. 309–326. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/corteggiani

[5] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling
near-real-time dynamic analyses of embedded systems,” in 9th USENIX
Workshop on Offensive Technologies (WOOT 15). Washington, D.C.:
USENIX Association, 2015. [Online]. Available: https://www.usenix.org/
conference/woot15/workshop-program/presentation/koscher

[6] B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek, and J. A. Halderman,
“Green lights forever: Analyzing the security of traffic infrastructure,” in
8th USENIX Workshop on Offensive Technologies (WOOT 14). San
Diego, CA: USENIX Association, 2014. [Online]. Available: https://www.
usenix.org/conference/woot14/workshop-program/presentation/ghena

[7] Z. Zhang, Z. Lv, J. Mo, and S. Niu, “Vulnerabilities analysis and
solution of vxworks,” in 2nd International Conference on Teaching
and Computational Science. Atlantis Press, 2014. [Online]. Available:
https://doi.org/10.2991/ictcs-14.2014.24

[8] T. Technologies, “De main boards - cyclone - de0-nano development and
education board.” [Online]. Available: https://www.terasic.com.tw/cgi-
bin/page/archive.pl?No=593

[9] ——, “De main boards - cyclone - de0-nano development and
education board.” [Online]. Available: https://www.terasic.com.tw/cgi-
bin/page/archive.pl?No=593

[10] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and Privacy
(SP), May 2018, pp. 679–696.

[11] P. E. Black, “Juliet 1.3 test suite: Changes from 1.2,” NIST Technical
Note 1995, Jun 2018.

[12] Unicorn, “Unicorn.” [Online]. Available: https://www.unicorn-engine.org/
[13] J. Sandin, “Exploiting memory corruption vulnerabilities on the freertos

os,” Dec 2017. [Online]. Available: https://shmoo.gitbook.io/2016-
shmoocon-proceedings/bring it on/01 exploiting memory corruption

[14] “Altera nios ii freertos demo.” [Online]. Available: https://www.freertos.
org/FreeRTOS-Nios2.html

[15] Z. Várnagy, “Avatao tool tutorials: Unicorn.” [Online].
Available: https://platform.avatao.com/paths/8e720072-9169-4d4c-9569-
c330ce7fd947/challenges/28f5ae81-6a01-11e6-bdf4-0800200c9a66

https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf
https://hackernoon.com/afl-unicorn-fuzzing-arbitrary-binary-code-563ca28936bf
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
http://www.eurecom.fr/publication/5417
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://www.usenix.org/conference/woot14/workshop-program/presentation/ghena
https://www.usenix.org/conference/woot14/workshop-program/presentation/ghena
https://doi.org/10.2991/ictcs-14.2014.24
https://www.terasic.com.tw/cgi-bin/page/archive.pl?No=593
https://www.terasic.com.tw/cgi-bin/page/archive.pl?No=593
https://www.terasic.com.tw/cgi-bin/page/archive.pl?No=593
https://www.terasic.com.tw/cgi-bin/page/archive.pl?No=593
https://www.unicorn-engine.org/
https://shmoo.gitbook.io/2016-shmoocon-proceedings/bring_it_on/01_exploiting_memory_corruption
https://shmoo.gitbook.io/2016-shmoocon-proceedings/bring_it_on/01_exploiting_memory_corruption
https://www.freertos.org/FreeRTOS-Nios2.html
https://www.freertos.org/FreeRTOS-Nios2.html
https://platform.avatao.com/paths/8e720072-9169-4d4c-9569-c330ce7fd947/challenges/28f5ae81-6a01-11e6-bdf4-0800200c9a66
https://platform.avatao.com/paths/8e720072-9169-4d4c-9569-c330ce7fd947/challenges/28f5ae81-6a01-11e6-bdf4-0800200c9a66

	Methodology
	Source code & reproduction of experiments
	IO Forwarding/JTAG
	Emulation
	Fuzzing


	Evaluation
	IO Forwarding through JTAG
	Emulation in Unicorn

	Future Work
	References

